Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.487
Filtrar
1.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564910

RESUMO

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Assuntos
Antineoplásicos , Eletrodos , Grafite , Compostos de Nitrogênio , Sulfetos , Ondas Ultrassônicas , Compostos de Zinco , Compostos de Zinco/química , Sulfetos/química , Antineoplásicos/química , Grafite/química , Flutamida/análise , Flutamida/química , Técnicas Eletroquímicas/métodos , Técnicas de Química Sintética , Eletroquímica , Limite de Detecção , Catálise , Nanocompostos/química , Nanoestruturas/química
2.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569970

RESUMO

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Assuntos
Antimônio , Arsênio , Carvão Vegetal , Recuperação e Remediação Ambiental , Grafite , Mineração , Poluentes do Solo , Antimônio/química , Antimônio/análise , Grafite/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Recuperação e Remediação Ambiental/métodos , Solo/química
3.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38578241

RESUMO

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Assuntos
Hemoglobinas Glicadas , Azul de Metileno , Hemoglobinas Glicadas/análise , Humanos , Azul de Metileno/química , Grafite/química , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Hemoglobinas/análise , Hemoglobinas/química , Ácidos Borônicos/química , Compostos Ferrosos/química , Metalocenos/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química
4.
ACS Sens ; 9(4): 2149-2155, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579117

RESUMO

Real-time tracking of respiratory patterns provides noninvasive and quick access for evaluating pathophysiological conditions yet remains challenging due to limited temporal resolution and poor sensitivity to dig out fingerprints of respiratory waveforms. Here, we report an electrochemical sensor for accurately tracing respiratory patterns of small animal models based on the electrochemical impedance mechanism for wireless coupling of a graphdiyne oxide (GYDO)-modified sensing coil chip and a reader coil chip via near-field magnetic induction. In the electrochemical impedance measurement mode, an alternating current is applied through the reader coil chip to perturb proton transport at the GYDO interface of the sensing coil chip. As demonstrated, a high-frequency perturbing condition significantly reduces the interfacial resistance for proton transport by 5 orders of magnitude under 95% relative humidity (RH) and improves the low-humidity responses with a limit of detection down to 0.2% RH, enabling in vivo accurate profiling of respiratory patterns on epileptic rats. The electrochemical impedance coupling system holds great potential for new wireless bioelectronics.


Assuntos
Técnicas Eletroquímicas , Animais , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ratos , Grafite/química , Respiração , Ratos Sprague-Dawley , Impedância Elétrica , Epilepsia/diagnóstico
5.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38587867

RESUMO

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Assuntos
Grafite , Lasers , Têxteis , Grafite/química , Humanos , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Condutividade Elétrica , Polietilenotereftalatos/química , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos
6.
ACS Sens ; 9(4): 2122-2133, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38602840

RESUMO

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Assuntos
DNA Tumoral Circulante , Ouro , Grafite , Nanopartículas Metálicas , Neoplasias Pancreáticas , Grafite/química , Humanos , Ouro/química , Nanopartículas Metálicas/química , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/análise , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Técnicas Biossensoriais/métodos , Espectroscopia Terahertz/métodos , Hibridização de Ácido Nucleico , Limite de Detecção
7.
J Chromatogr A ; 1722: 464884, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615558

RESUMO

The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.


Assuntos
Bilirrubina , Quitosana , Grafite , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Grafite/química , Quitosana/química , Bilirrubina/química , Bilirrubina/isolamento & purificação , Bilirrubina/sangue , Adsorção , Humanos
8.
Nature ; 628(8009): 741-745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658686

RESUMO

Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states1-6. This interest has been motivated by prospects of finding new physics, including topologically protected quasiparticles7-9, but also extends into metrology and device applications10-13. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in minimally twisted bilayer graphene14-18 support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions to operate in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory and practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic, strictly one-dimensional, electronic channels residing within the domain walls. The system described is unique in its ability to support Andreev bound states at quantizing fields and offers many interesting directions for further exploration.


Assuntos
Grafite , Teoria Quântica , Supercondutividade , Grafite/química , Eletrodos , Condutividade Elétrica
9.
Sci Rep ; 14(1): 9168, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649777

RESUMO

Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.


Assuntos
Grafite , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos , Fragmentos de Peptídeos , Conformação Proteica em alfa-Hélice , Grafite/química , Grafite/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Desdobramento de Proteína/efeitos dos fármacos , Halogenação , Adsorção , Nanoestruturas/química , Nanoestruturas/toxicidade
10.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667151

RESUMO

Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, a graphene membrane chip was fabricated by combining a MEMS process with a 2D material wet transfer process. Raman spectroscopy was used to assess the quality of graphene after the transfer. The mechanism behind the influence of the processing dose and residence time of the helium ion beam on the processed pore size was investigated. Subsequently, graphene nanopores with diameters less than 10 nm were fabricated via helium ion microscopy. DNA was detected using a 5.8 nm graphene nanopore chip, and the appearance of double-peak signals on the surface of 20 mer DNA was successfully detected. These results serve as a valuable reference for nanopore fabrication using 2D material for DNA analysis.


Assuntos
DNA , Grafite , Hélio , Nanoporos , Grafite/química , Análise Espectral Raman , Técnicas Biossensoriais , Microscopia
11.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667154

RESUMO

We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.


Assuntos
Técnicas Biossensoriais , Compostos Ferrosos , Glucose , Grafite , Metalocenos , Polietilenoimina , Grafite/química , Metalocenos/química , Compostos Ferrosos/química , Polietilenoimina/química , Glucose/análise , Eletrodos , Oxirredução
12.
Biosensors (Basel) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667165

RESUMO

The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs-NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Grafite , Nanopartículas Metálicas , Paládio , Platina , Grafite/química , Ouro/química , Platina/química , Paládio/química , Nanopartículas Metálicas/química , Biomarcadores/urina , Humanos , Peróxido de Hidrogênio , Ligas/química , Glucose/análise , Eletrodos , Papel
13.
ACS Sens ; 9(4): 1978-1991, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564767

RESUMO

This paper presents a sponge-based electrochemical sensor for rapid, on-site collection and analysis of infectious viruses on solid surfaces. The device utilizes a conducting porous sponge modified with graphene, graphene oxide, and specific antibodies. The sponge serves as a hydrophilic porous electrode capable of liquid collection and electrochemical measurements. The device operation involves spraying an aqueous solution on a target surface, swiping the misted surface using the sponge, discharging an electrolyte solution with a simple finger press, and performing in situ incubation and electrochemical measurements. By leveraging the water-absorbing ability of the biofunctionalized conducting sponge, the sensor can effectively collect and quantify virus particles from the surface. The portability of the device is enhanced by introducing a push-release feature that dispenses the liquid electrolyte from a miniature reservoir onto the sensor surface. This reservoir has sharp edges to rupture a liquid sealing film with a finger press. The ability of the device to sample and quantify viral particles is demonstrated by using influenza A virus as the model. The sensor provided a calculated limit of detection of 0.4 TCID50/mL for H1N1 virus, along with a practical concentration range from 1-106 TCID50/mL. Additionally, it achieves a 15% collection efficiency from single-run swiping on a tabletop surface. This versatile device allows for convenient on-site virus detection within minutes, eliminating the need for sample pretreatment and simplifying the entire sample collecting and measuring process. This device presents significant potential for rapid virus detection on solid surfaces.


Assuntos
Técnicas Eletroquímicas , Grafite , Vírus da Influenza A Subtipo H1N1 , Vírion , Grafite/química , Vírion/química , Vírion/isolamento & purificação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Propriedades de Superfície , Porosidade , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Humanos
14.
ACS Appl Mater Interfaces ; 16(15): 18564-18573, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567738

RESUMO

Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.


Assuntos
Técnicas Biossensoriais , Grafite , Receptores Odorantes , Odorantes , Grafite/química , Gases , Estereoisomerismo , Receptores Odorantes/química , Peptídeos
15.
Environ Sci Technol ; 58(15): 6763-6771, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572777

RESUMO

Understanding interfacial interactions of graphene oxide (GO) is important to evaluate its colloidal behavior and environmental fate. Single-layer GO is the fundamental unit of GO colloids, and its interfacial aqueous layers critically dictate these interfacial interactions. However, conventional techniques like X-ray diffraction are limited to multilayer systems and are inapplicable to single-layer GO. Therefore, our study employed atomic force microscopy to precisely observe the in situ dynamic behaviors of interfacial aqueous layers on single-layer GO. The interfacial aqueous layer height was detected at the subnanometer level. In real-time monitoring, the single-layer height increased from 1.17 to 1.70 nm within 3 h immersion. This sluggish process is different from the rapid equilibration of multilayer GO in previous studies, underscoring a gradual transition in hydration kinetics. Ion strength exhibited negligible influence on the single-layer height, suggesting a resilient response of the interfacial aqueous layer to ion-related perturbations due to intricate ion interactions and electrical double-layer compression. Humic acid led to a substantial increase in the interfacial aqueous layers, improving the colloidal stability of GO and augmenting its potential for migration. These findings hold considerable significance regarding the environmental behaviors of the GO interfacial aqueous layer in ion- and organic-rich water and soil.


Assuntos
Grafite , Água , Microscopia de Força Atômica , Coloides
16.
Anal Chem ; 96(15): 5832-5842, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573917

RESUMO

Chronic kidney disease is one of the major health issues worldwide. However, diagnosis is now highly centralized in large laboratories, resulting in low access to patient monitoring and poor personalized treatments. This work reports the development of a graphene-based lab-on-a-chip (G-LOC) for the digital testing of renal function biomarkers in serum and saliva samples. G-LOC integrates multiple bioelectronic sensors with a microfluidic system that enables multiplex self-testing of urea, potassium, sodium, and chloride. The linearity, limit of detection (LOD), accuracy, and coefficient of variability (CV) were studied. Accuracy values higher than 95.5% and CV lower than 9% were obtained for all of the biomarkers. The analytical performance was compared against three reference lab benchtop analyzers by measuring healthy- and renal-failure-level samples of serum. From receiver operating characteristic (ROC) plots, sensitivities (%) of 99.7, 97.6, 99.1, and 89.0 were obtained for urea, potassium, sodium, and chloride, respectively. Then, the test was evaluated in noninvasive saliva samples and compared against reference methods. Correlation and Bland-Altman plots showed good correlation and agreement of the G-LOC with the reference methods. It is noteworthy that the precision of G-LOC was similar to better than benchtop lab analyzers, with the advantage of being highly portable. Finally, a user testing study was conducted. The analytical performance obtained with untrained volunteers was similar to that obtained with trained chemists. Additionally, based on a user experience survey, G-LOC was found to have very simple usability and would be suitable for at-home diagnostics.


Assuntos
Grafite , Nefropatias , Humanos , Cloretos , Autoteste , Dispositivos Lab-On-A-Chip , Rim , Nefropatias/diagnóstico , Biomarcadores , Ureia , Potássio , Sódio
17.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619909

RESUMO

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Assuntos
Grafite , Solanum lycopersicum , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Alumínio , Eletrocoagulação/métodos , Água , Eletrodos , Resíduos Industriais/análise
18.
ACS Appl Mater Interfaces ; 16(15): 18300-18310, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574271

RESUMO

To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 µg/mL and for Gram-negative bacteria was 125 µg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Humanos , Prata/farmacologia , Staphylococcus aureus , Escherichia coli , Óxidos/farmacologia , Antibacterianos/farmacologia , Grafite/farmacologia
19.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578031

RESUMO

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Assuntos
Grafite , Eletricidade , Condutividade Elétrica , Proteínas , DNA/química
20.
Mikrochim Acta ; 191(5): 243, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575711

RESUMO

PEDOT: PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 µM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of  UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.


Assuntos
Grafite , Suor , Ácido Úrico , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...